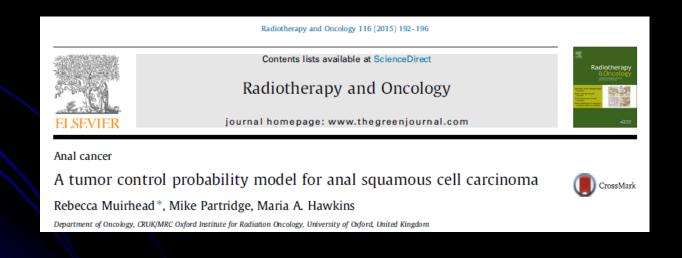
#### TCP in anal cancer

Anders Johnsson Dept of Oncology Lund

# **Radiotherapy dosing**

- Guidelines recommend 50-60 Gy with FUMI
- Rather effective (70-80% cured) but toxic (late sequele)
- Optimal RT dose for the individual patient unknown

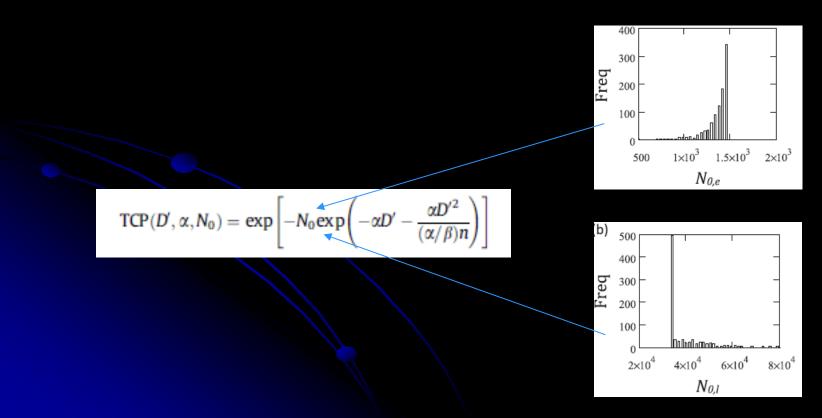

- We need to know more
- Relations between RT dose and effect?
- Other factors of importance? Tumor size?

#### **TCP** studies in anal cancer

- Muirhead et al 2015
- Our own study on the NOAC database 2018

#### **TCP** anal cancer

- Based on 13 studies (n=645 patients)
- Impact of tumor size on TCP?
- Not individual patient data



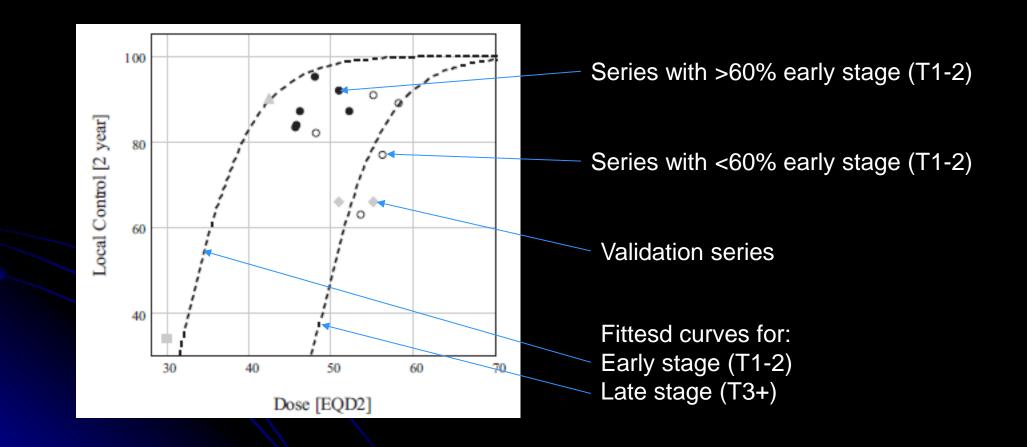

| IMRT publications identified for use within the standard linear-quadratic model to create the TCP model. |      |                 |           |          |                               |                                         |                                           |                       |
|----------------------------------------------------------------------------------------------------------|------|-----------------|-----------|----------|-------------------------------|-----------------------------------------|-------------------------------------------|-----------------------|
|                                                                                                          |      | No. of patients | T1/T2 (%) | T3/4 (%) | Median dose<br>delivered (Gy) | Median overall<br>treatment time (days) | 2 year local control<br>unless stated (%) | FU median<br>(months) |
| Milano et, al, [27]                                                                                      | 2005 | 17              | 47.1      | 52,3     | 52,3                          | 39"                                     | 82                                        | 20                    |
| Salama et al. [26]                                                                                       | 2007 | 53              | 60.4      | 37.8     | 51.5                          | 42                                      | 83.9 (18 months)                          | 14.5                  |
| Pepek et al. [27]                                                                                        | 2010 | 31              | N/R       | N/R      | 54.0                          | 40*                                     | 100                                       | 19                    |
| Bazan et al. [28]                                                                                        | 2011 | 29              | 72,4      | 27.6     | 54.0                          | 40                                      | 92 (3 years)                              | 32                    |
| Vieillot et al. [29]                                                                                     | 2012 | 39              | 36,0      | 64.0     | 63.0                          | 50                                      | 77                                        | 24                    |
| De Foe et al. [30]                                                                                       | 2012 | 78              | 65.4      | 30,8     | 55.8                          | 50                                      | 83,2                                      | 19.8                  |
| Dewas et al. [31]                                                                                        | 2012 | 24              | 47.8      | 52,2     | 59.4                          | 47                                      | 63                                        | 40                    |
| Kachnic et al. [32]                                                                                      | 2012 | 43              | 67.0      | 14.0     | 52,2                          | 39"                                     | 95                                        | 24                    |
| Deenen et al. [33]                                                                                       | 2012 | 18              | 33,3      | 66.7     | 63.0                          | 47*                                     | 89                                        | 28                    |
| Chuong et al. [34]                                                                                       | 2013 | 52              | 55.8      | 44.2     | 56.0                          | 38.5                                    | 90.8                                      | 19                    |
| Dasgupta et al. [35]                                                                                     | 2013 | 45              | 64.3      | 31.2     | 54.0                          | 40                                      | 87                                        | 27.5                  |
| Call et al. [36]                                                                                         | 2014 | 148             | 72.0      | 28.0     | 51.3                          | 40                                      | 87 (3 yrs)                                | 26.8                  |
| Koerber et al. [37]                                                                                      | 2014 | 68              | 69.1      | 30,9     | 54,5                          | 37*                                     | 83                                        | 30,8                  |

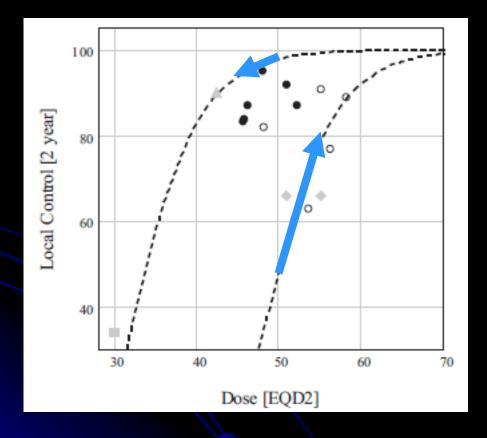
\* Median overall treatment time not reported for the IMRT group therefore an estimation was calculated using dose/dose per fraction and interruptions.

$$\mathsf{BED} = D' = D\left(1 + \left(\frac{d}{\alpha/\beta}\right)\right) - \frac{0.692}{\alpha}\left(\frac{T - t_k}{t_p}\right) \blacktriangleleft$$

Correction for OTT (median in study)




More colonogenic cells in late than early stages


The proportions of early/late tumors used in the model

IMRT publications identified for use within the standard linear-quadratic model to create the TCP model.

|                      |      | No. of patients | T1/T2 (%) | T3/4 (%) | Median dose<br>delivered (Gy) | Median overall<br>treatment time (days) | 2 year local control<br>unless stated (%) | FU median<br>(months) |
|----------------------|------|-----------------|-----------|----------|-------------------------------|-----------------------------------------|-------------------------------------------|-----------------------|
| Milano et. al. [27]  | 2005 | 17              | 47.1      | 52,3     | 52,3                          | 39"                                     | 82                                        | 20                    |
| Salama et al. [26]   | 2007 | 53              | 60.4      | 37.8     | 51.5                          | 42                                      | 83.9 (18 months)                          | 14.5                  |
| Pepek et al. [27]    | 2010 | 31              | N/R       | N/R      | 54.0                          | 40*                                     | 100                                       | 19                    |
| Bazan et al. [28]    | 2011 | 29              | 72.4      | 27.6     | 54.0                          | 40                                      | 92 (3 years)                              | 32                    |
| Vieillot et al. [29] | 2012 | 39              | 36,0      | 64.0     | 63.0                          | 50                                      | 77                                        | 24                    |
| De Foe et al. [30]   | 2012 | 78              | 65.4      | 30,8     | 55,8                          | 50                                      | 83,2                                      | 19.8                  |
| Dewas et al. [31]    | 2012 | 24              | 47.8      | 52.2     | 59.4                          | 47                                      | 63                                        | 40                    |
| Kachnic et al. [32]  | 2012 | 43              | 67.0      | 14.0     | 52,2                          | 39"                                     | 95                                        | 24                    |
| Deenen et al. [33]   | 2012 | 18              | 33,3      | 66.7     | 63.0                          | 47*                                     | 89                                        | 28                    |
| Chuong et al. [34]   | 2013 | 52              | 55,8      | 44.2     | 56.0                          | 38,5                                    | 90,8                                      | 19                    |
| Dasgupta et al. [35] | 2013 | 45              | 64,3      | 31.2     | 54.0                          | 40                                      | 87                                        | 27.5                  |
| Call et al. [36]     | 2014 | 148             | 72.0      | 28.0     | 51,3                          | 40                                      | 87 (3 yrs)                                | 26.8                  |
| Koerber et al. [37]  | 2014 | 68              | 69.1      | 30,9     | 54.5                          | 37"                                     | 83                                        | 30.8                  |

Median overall treatment time not reported for the IMRT group therefore an estimation was calculated using dose/dose per fraction and interruptions.





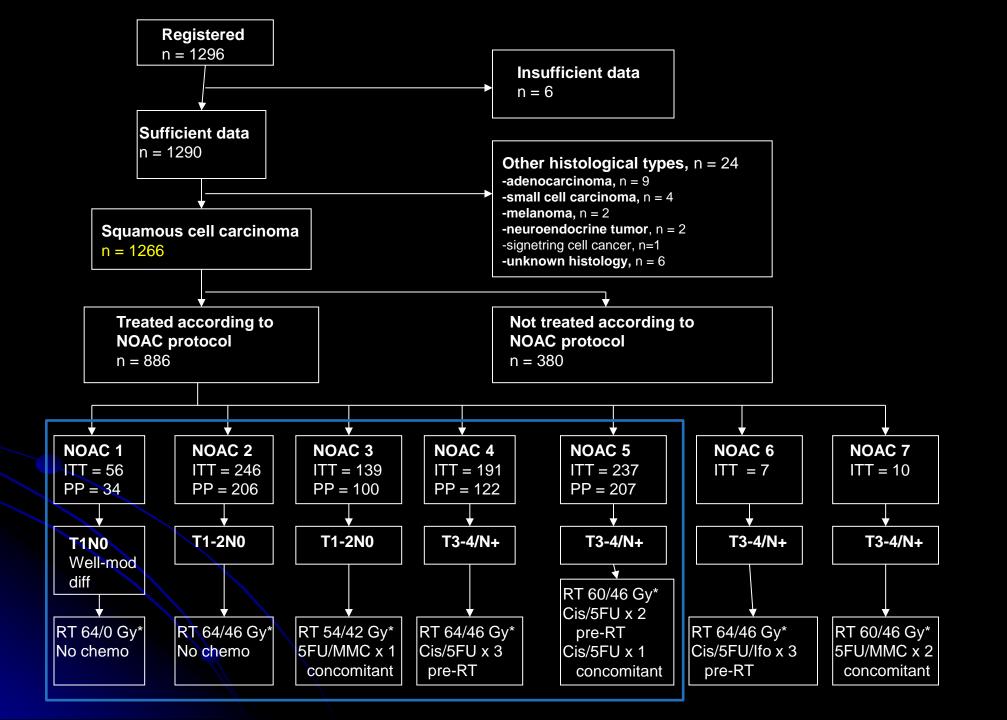
Higher dose needed for late than for early stage

#### Early stage:

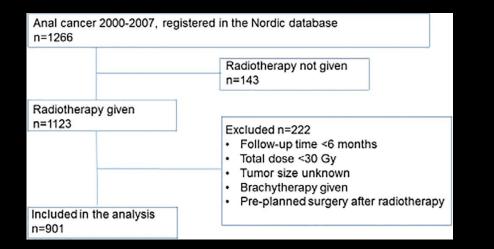
RT dose reduction from 50 Gy to 45 Gy reduces 2 year local control from 98% tio 95%

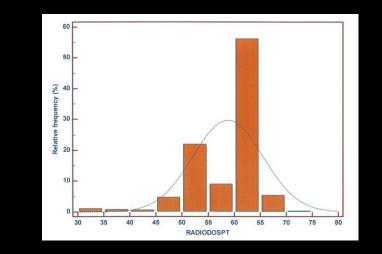
#### Late stage:

RT increase from 50 Gy to 55 Gy increases 2 year local control from 50% to 80%


# NOAC database




- NOrdic Anal Cancer group
- Guidelines launched 2000
- 16 Oncology depts in Sweden, Norway and Denmark
- Outcome data collected 2008-10
- All patients diagnosed 1/7 2000 30/6 2007


Used for TCP analyses





# Local tumor control probability (LTCP)





Heterogenous RT doses Advantage for LTCP modelling

# Local tumor control probability (LTCP)

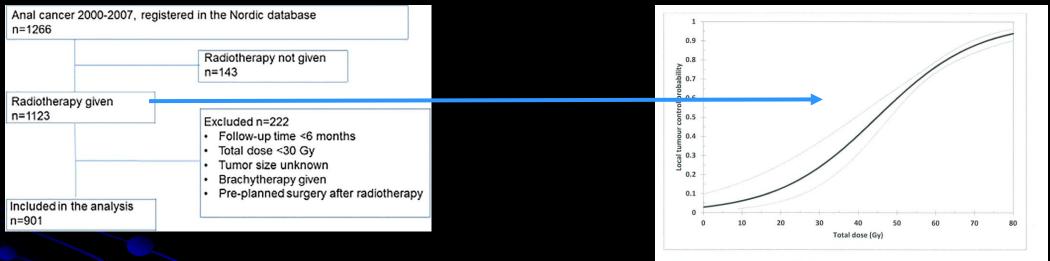
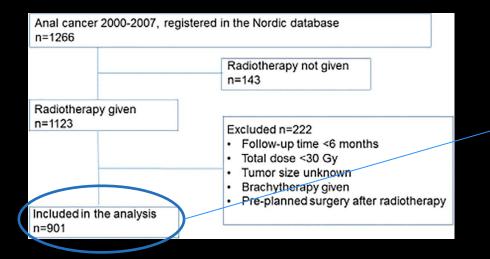
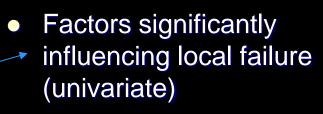
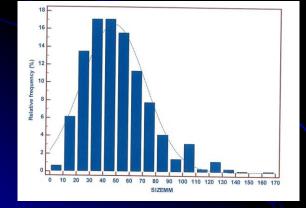
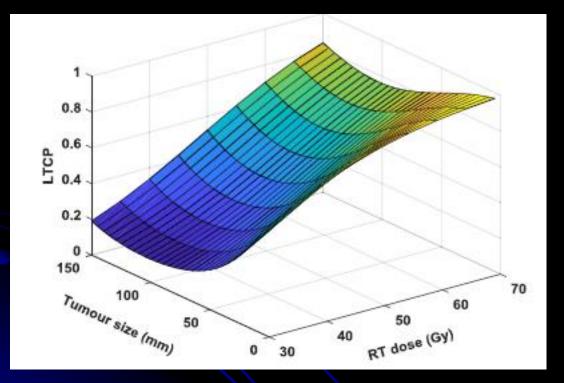





Figure 2. Local tumour control probability vs total radiation dose for all patients.


#### Nice LTCP curve among all RT patients - crude data

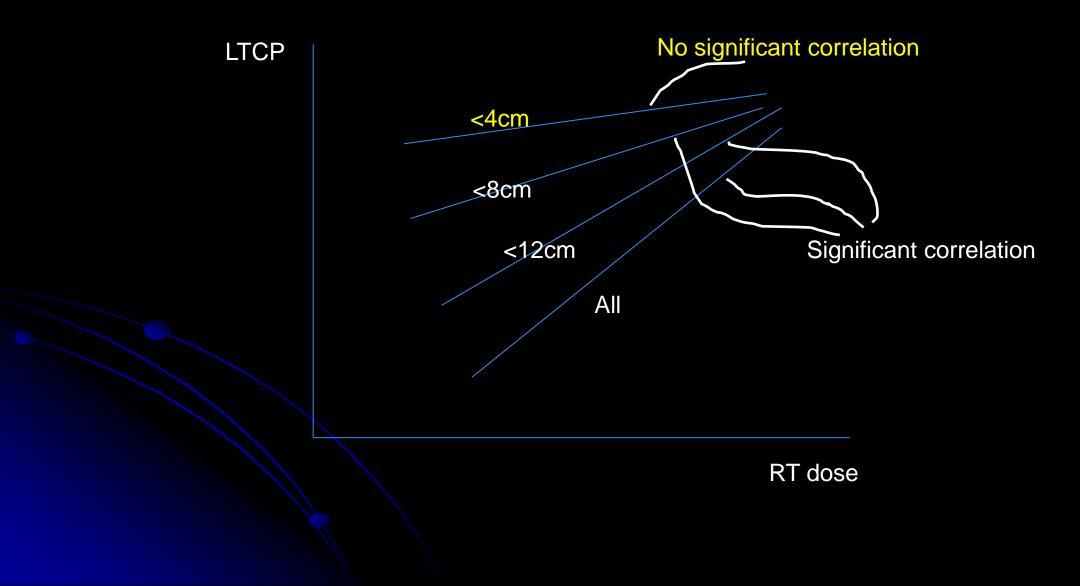
# Determinants for local control after RT






- RT dose
- Tumor size
- Gender
- N stage
- T4
- Chemotherapy



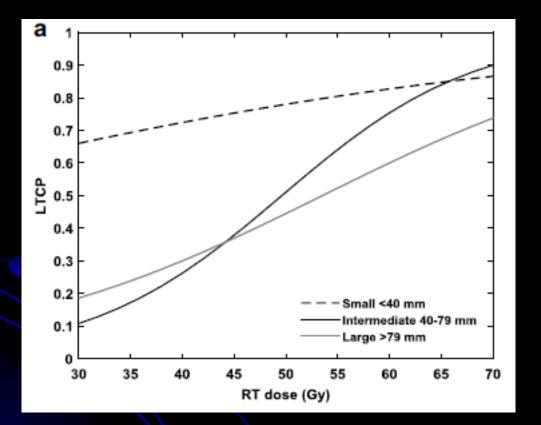

Special focus on tumor size

#### LTCP – RT dose – tumor size



Non-linear relation Paradoxical increase in LTCP for tumors >8 cm

# LTCP by tumor size groups




# Size groups in further analyses



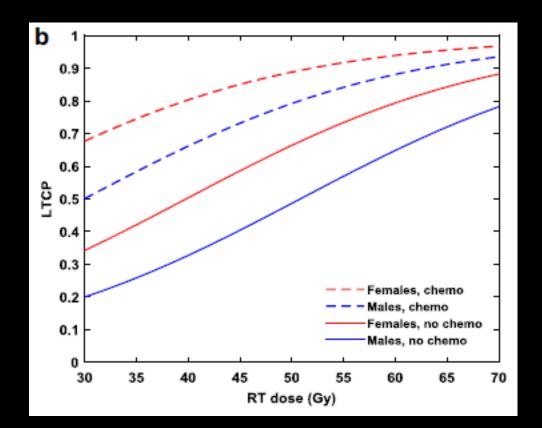
Intermediate 40-79 mm n=466 Large <u>></u>80 mm n=97

## LTCP by size groups – univariable



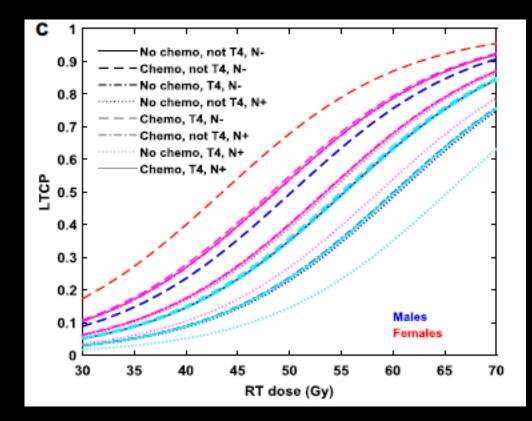
RT dose more important for intermediate and large tumors

# Busy table...


#### Univariable and multivariable predictors for local failure, divided into tumour size groups.

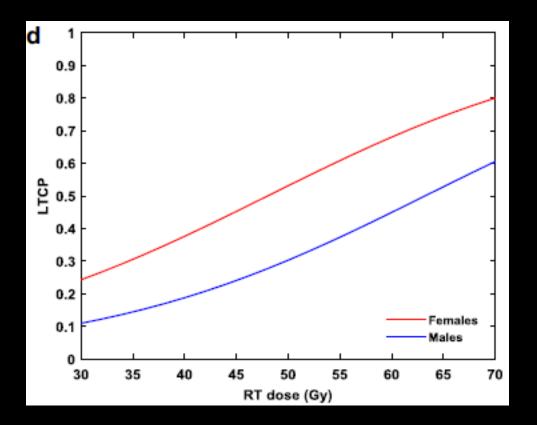
|               |          | Poisson regression |                              |                     |                 |                | Logistic regression |             |      |             |               |      |             |         |
|---------------|----------|--------------------|------------------------------|---------------------|-----------------|----------------|---------------------|-------------|------|-------------|---------------|------|-------------|---------|
|               |          |                    | Univaria                     | ble                 |                 | Multivariable  |                     | Univariable |      |             | Multivariable |      |             |         |
|               | n        | f                  | RR                           | 95% CI              | р               | RR             | 95% CI              | р           | OR   | 95% CI      | р             | OR   | 95% CI      | р       |
|               | Tumour   | size <40 m         | ım (number                   | of patients n = 33  | 8, number of lo | cal failures J | = 60)               |             |      |             |               |      |             |         |
| RT dose (Gy)  | 64 (54-) | 64)*               | 0.97                         | 0.93-1.01           | 0.142           | 0.91           | 0.88-0.94           | < 0.001     | 0.97 | 0.93-1.01   | 0.146         | 0.94 | 0.89-0.98   | 0.005   |
| Female gender | 254      | 37                 | 0.45                         | 0.27-0.76           | 0.002           | 0.42           | 0.25-0.72           | 0.001       | 0.45 | 0.25-0.83   | 0.009         | 0.48 | 0.26-0.90   | 0.020   |
| T4            | 14       | 3                  | 1.23                         | 0.30-3.34           | 0.722           |                |                     |             | 1.28 | 0.28-4.25   | 0.714         |      |             |         |
| N+            | 45       | 8                  | 1.08                         | 0.47-2.14           | 0.841           |                |                     |             | 1.00 | 0.41-2.18   | 0.996         |      |             |         |
| Chemotherapy  | 134      | 14                 | 0.36                         | 0.19-0.64           | 0.001           | 0.17           | 0.09-0.32           | < 0.001     | 0.40 | 0.20-0.75   | 0.005         | 0.25 | 0.11-0.50   | < 0.001 |
|               | Tumour   | size 40-79         | 9 mm ( <i>n</i> = 46         | 65, <i>f</i> = 132) |                 |                |                     |             |      |             |               |      |             |         |
| RT dose (Gy)  | 60 (56-0 | 64) <sup>b</sup>   | 0.90                         | 0.88 - 0.92         | <0.001          | 0.90           | 0.88-0.92           | < 0.001     | 0.90 | 0.87-0.93   | <0.001        | 0.89 | 0.86 - 0.92 | < 0.001 |
| Female gender | 336      | 85                 | 0.57                         | 0.40-0.82           | 0.002           | 0.48           | 0.33-0.69           | < 0.001     | 0.59 | 0.38-0.92   | 0.018         | 0.46 | 0.29 - 0.74 | 0.001   |
| T4            | 94       | 35                 | 1.57                         | 1.05 - 2.28         | 0.023           | 1.68           | 1.11-2.48           | 0.011       | 1.68 | 1.03 - 2.69 | 0.034         | 1.74 | 1.03 - 2.91 | 0.037   |
| N+            | 191      | 65                 | 1.65                         | 1.18-2.33           | 0.004           | 2.43           | 1.69 - 3.49         | < 0.001     | 1.59 | 1.06-2.40   | 0.025         | 1.83 | 1.16 - 2.89 | 0.010   |
| Chemotherapy  | 339      | 91                 | 0.58                         | 0.40-0.84           | 0.003           | 0.45           | 0.31-0.67           | < 0.001     | 0.76 | 0.49-1.19   | 0.227         | 0.55 | 0.33-0.93   | 0.025   |
|               | Tumour   | size >79 m         | nm ( <i>n</i> = 98, <i>f</i> | = 44)               |                 |                |                     |             |      |             |               |      |             |         |
| RT dose (Gy)  | 60 (54-) | 60) <sup>c</sup>   | 0.92                         | 0.88-0.96           | < 0.001         | 0.91           | 0.86-0.95           | < 0.001     | 0.94 | 0.88-0.99   | 0.038         | 0.94 | 0.88 - 1.00 | 0.044   |
| Female gender | 63       | 23                 | 0.36                         | 0.20-0.66           | 0.001           | 0.30           | 0.16-0.55           | < 0.001     | 0.38 | 0.16-0.89   | 0.027         | 0.38 | 0.16-0.91   | 0.031   |
| T4            | 58       | 29                 | 1.82                         | 0.99-3.48           | 0.060           |                |                     |             | 1.67 | 0.74-3.84   | 0.223         |      |             |         |
| N+            | 61       | 29                 | 1.54                         | 0.84-2.95           | 0.174           |                |                     |             | 1.33 | 0.58-3.07   | 0.500         |      |             |         |
| Chemotherapy  | 83       | 37                 | 0.81                         | 0.38-1.98           | 0.604           |                |                     |             | 0.92 | 0.30-2.85   | 0.881         |      |             |         |

a,bc Median (IQR); range 30-68ª, 30-70b and 30-70f.


# Small tumors (<40 mm)

| N=337        | Univariable | Multivariable |
|--------------|-------------|---------------|
| RT dose      | P=0,1       | P=0,005       |
| Gender       | P=0,009     | P=0,02        |
| Τ4           | P=0,7       |               |
| N+           | P=1,0       |               |
| Chemotherapy | P=0,005     | P<0,001       |




# Intermediate tumors (40-79 mm)

| N=465        | Univariable | Multivariable |
|--------------|-------------|---------------|
| RT dose      | P<0,001     | P<0,001       |
| Gender       | P=0,02      | P=0,001       |
| Τ4           | P=0,03      | P=0,04        |
| N+           | P=0,03      | P=0,01        |
| Chemotherapy | P=0,2       | P=0,03        |



## Large tumors (>79 mm)

| N=98         | Univariable | Multivariable |
|--------------|-------------|---------------|
| RT dose      | P<0,001     | P<0,001       |
| Gender       | P=0,02      | P=0,001       |
| Τ4           | P=0,2       |               |
| N+           | P=0,5       |               |
| Chemotherapy | P=0,9       |               |



## **General conclusions**

- Tumors <4cm lower RT dose
- T4 (regardless of size) higher RT dose
- N+ higher RT dose
- Add chemotherapy

#### **General conclusions**

- Tumors < 4cm lower RT dose </p>
- T4 (regardless of size) higher RT dose
- N+ higher RT dose
- Add chemotherapy

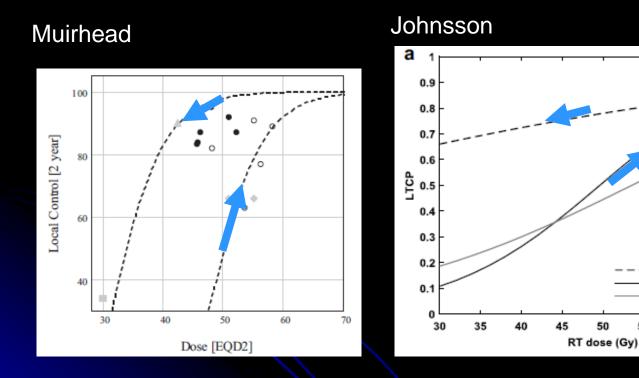
We already do this – our results fit with guidelines

|                         | Muirhead | Johnsson |
|-------------------------|----------|----------|
| Pat #                   | 645      | 901      |
| Individual patient data | No       | Yes      |
| IMRT                    | Yes      | No       |

## Interstudy comparison

imall <40 mm

arge >79 mm

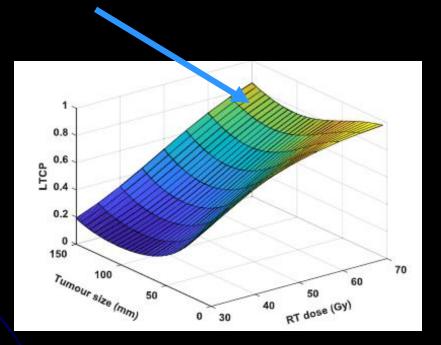

60

55

termediate 40-79 mm

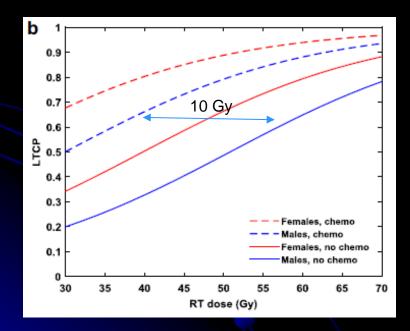
65

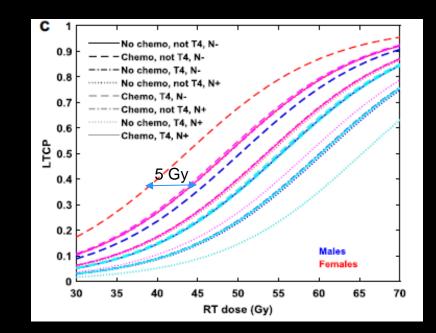
70




- General conclusions similar
- Different tumor size groups
- Slightly different endpoints
- Muirhead: No low-dose data
- Our data more reliable due to "real" data and not modelled...?

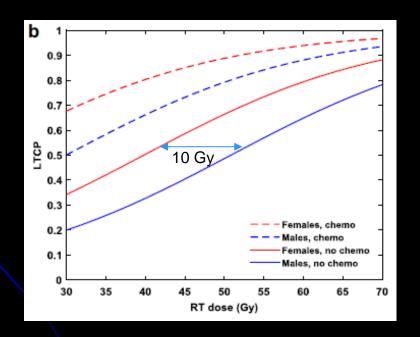
Steeper TCP curves


#### General conclusions


#### Do not disqualify very large tumors from optimal treatment with curative intent!

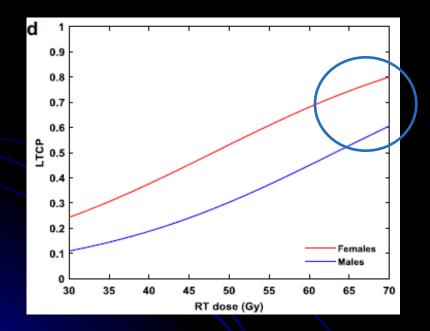


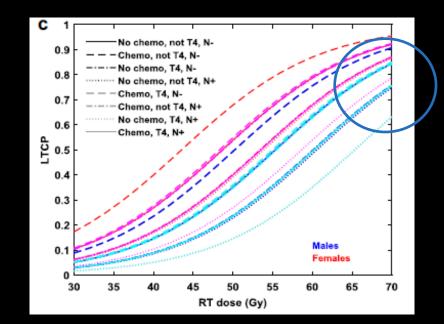
### **Further thoughts**


#### Increase the RT dose by 5 -10 Gy if chemotherapy cannot be given






## **Further thoughts**


Should we increase the RT dose by 10 Gy in male patients??



#### **Further thoughts**

#### Role for RT dose escalation >60 Gy after all ??







Thank You